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SOTOURT 

Tht qutstlono wt shall disous» in whAt follows belong to 

two fl«l(U which formerly wtr^ quit« disjoint, tht elassioal 

theory of probability and the classical calculus of variations. 

That thsrt is now eons ids rsble overlap is due to tha rise  in 

scientific interest in the field of control processes.    Al- 

though it is only within the last few years that the theory 

of feedback control has penetrated the academic curriculum and 

become a respectable member of the mathematical oonmunity«,  the 

conventional formulation is already far outmoded.    In order to 

treat current and future problems of any significance,  it is 

absolutely essential to introduce stochastic eleaents.    These, 

however, enter in entirely novel ways,  not in the fairly well 

understood fashion of conventional stochastic processes,  but 

in connection with "learning processes," or, as we shall 

henceforth say, adaptive processes. 

In what follows we show how the functional equation tech- 

nique of dynamic programing can be used to treat adaptive 

control processes,  and how continuous processes can be defined 

in terms of the discrete versions. 
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A »MATHEMATICAL FORMULATION OP VARIATIONAL PROCESSES 
OF ADAPTIVE  TYPE 

Richard Bellman 

1.    Introduction 

Tht qutttions we shall discuss in what  follows belong to 

two fields which  formerly were quite disjoint,  the classical 

theory of probability and the classical calculus of variations. 

That there is now considerable overlap is due to the  rise in 

scientific interest in the  field of control processes. 

Although it is only within the la^t  few years that the theory 

of feedback control has penetrated the academic curriculum and 

become a respectable member of the mathematical community,  the 

conventional  formulation is already  far outmoded.     In order to 

treat current and  future problems of any significance  it is 

absolutely essential to introduce stochastic elements.     These, 

however,  enter in entirely novel ways, not in the  fairly well 

understood fashion of conventional  stochastic processes,  but 

in connection with  "learning processes," cf.    [2]. 

or, as we shall henceforth say,  adaptive processes. 

In order to prepare a suitable background  for the  intro- 

duction of the new  features,   let us  review the elementary ideas 

of feedback control processes.     We  are, of course,  here 

interested only in the mathematical presentation of these con- 

cepts, and shall ignore any of the difficulties of engineering 

or statistical application. * 

One version of the feedback control problem is that of 

maximising a functional of the  form 
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(i) J(y) -/T F(^y)dt 

over all  functions    y(t),     where    x    and    y    are connected by 

means of a differential equation 

(2) ff - 0(x,y),     x(0)  « c, 

and    y    nay be subject  to  further constraints which.  In general, 

will depend upon    x(t). 

Although problems of this genre appear to belong In  ,: very 

natural  way to the calculus of variations,  and thus to be 

susceptible  to classical  techniques,  they are often more 

advantageously treated by means of the theory of dynamic pro- 

gramming   [l],   [2] •     It  turns out to be convenient  from many 

points of view,  conceptual,  analytic, and computational,  to 

consider a discrete version of the foregoing problem. 

Let us agree to maximize the function 

N 
(3) JN(y) -   1 ^VV 

where 

<*) xk+i •\ 
+ 0(VV'   xo" 0' 

over the  set  of    y:  y^yp»... #yN#    with,   as above,  posalbly 

some constraints present.     Not only are problems posed in this 

form much more amenable  to  the application of digital computers, 

but,  what  is often forgotten,   they  frequently  represent more 
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rtallttlc descriptions of th« original physical process. 

So  far,  everything has been very deterministic.     Let us 

now Introduce btoohastic elements.    In place of the transforma- 

tion of (2),   let us suppose that    x.   ,    lb obtained by means 

of a stochastic transformation 

(5) «ic " ^ + ^VVk''   xo-c- 

In place of the original maximisation problem,   let us consider 

the problem of maximizing the expected value of the   function 

N 
(6) JN(y) -   z ^W1^' 

At the moment,  we take the    r.     to represent a sequence of 

independent  random variables,  and the    y.     are to be chosen in 

feedback fashion.    By this we mean that    y,     is chosen with 

knowledge of    XQ,X^, ... ,x^_,,  yQ*yi»• • • »yu_i»   ^*o'^*l* * *''^k—1* 

but not of    r.,    nor oi  any of the  following    x's,  y's, or r's. 

In  I3J  we discussed in some detail  the use of the 

functional equation techniques of dynamic prograraralng to treat 

optimization problems of this nature.    Our emphasis there was 

upon the use of discrete processes to lay a  foundation for the 

rigorous  formulation of continuous processes. 

In this paper, we wish to  discuss corresponding problems 

arising in cases in which the distribution  functions  for the 

r.     are only partially  known.     The problems we discuss here 

represent only a small part of the cornucopia of questions 

which the  theory of feedback control thrusts upon us.     In a 
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series of papers with R.   Kaiaba   [^, 5 # 6 , 7 , 8] , we have  laid 

a  foundation for the  study of such questions. 

2.    Multistage Decision Procegace 

To treat the optimization problems described In the pre- 

ceding paragraph, at well as those of more complex nature, we 

use the concept of a multistage decision process. Let p be 

a point In a space S and T(pfq) a set of transformations, 

defined for all p £ S and q e S,, a second space, with the 

property that    T(p,q) «   s    for all    p t  S    and    q "  S^. 

Starting with a point    p,,    a choice of    q,     is made, 

leading to a new point    p2 « T(p1,q1).     Repeating the process, 

a choice of    q^    leads to a third point    p^ •= T(pp,q2),    and 

so on.     The set of    q's,       Qi^p'* * * ,(1N^'     l8 called a ££Ü£Z* 

and the process Itself Is called a multistage decision process. 

Let us now suppose that the    q.     are  to be chosen so as to 

maximise a preasslgned criterion function 

(1) FCpj^^g,.. .,pN;q1,q2,.. .,qN). 

A policy which maximizes Is called an optimal policy. 

Since the problem of determining optimal policies in this 

generality is much too difficult, let us restrict ourselves to 

the case where    P    Is  separable, 

(2) PN - RCp^q^   +  R(p2,q2)  +   •••   ♦  R(pN,qN). 

Fortunately, in many significant applications, P can be taken 

to have this form. 
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Th« case whtre only th« term    RCPvtQvi)    appears Is called 

tenalnml control In engineering circles.     If the number of 

stages,    N,    is itself a  function cf the sequence of statin 

and decisions, we speak of an iapllcit variational problem. 

The bauic problem is that of determining optimal policies 

and the value of the maximum of    F. 

3.    Functional Equation Approaoh 

For a variety of reasons which we shall not enter into, 

conventional methods of calculus are seldom operative by them- 

selves.     Let us introduce the sequence of functions    I^M^PI^!» 

defined by the relation 

(i) Vpi^ " "^ [^P]/^) + R(P2»Q2) + ••• + R(pN»qN)l# 

for    N - 1,2,...,    and    p1 ^  S. 

An application of the principle of optimality   [i],  p.   Q}, 

(or,  in this case,  some  simple manipulation) yields the basic 

recurrence relation 

(2) V1^  " ***   [R(Pi'V *  Vl^^l^l^'' 
ql 

for    N  -  2,3#...»     with 

(3) fi^pi)  " "^ ^Pi'^i- 
^1 

These equations yield two sequences, the sequence of 

maxima,  ^i/Pi^»  &nd tht sequence of policy functions. 
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{Q|j(Pi)l • Th* runctlon QIJCPI)  !■ th« choice of q,  which la 

madt when the system Is in stat« p.  and there are N stages 

rsmainlnc. 

4.  Discuision 

The usual approach to the foregoing maxlalzatlon problem 

attempts to determine the set [Qi»Qp'* *''^N  at one tlme» 

using varlatloiuil techniques.  In plaoe of this, we determine 

q,  in terms of p,  and N, then q  In terms of p? and 

N — 1,  and so on.  This is feedback control. We determine the 

"control vector" q.  in terms of the current state of the 

system, p., and the duration of the process, N — 1. 

For deterministic processes, the two approaches are equiva- 

lent. For stochastic processes, they diverge rapidly. We shall 

pursue the "feedback" approaun since it is both easier to follow 

and much the more important. 

3.  Stoehaslic Multistage Decision Processes 

Let us now suppose that a choice of q,  in state p, 

yields a state p2 - TCp^q^r.), where r^ is a random vector 

with a given distribution function dQ(r1).  As above, we assume 

that T(p1,q1,ri) € S for p, ^ S,  q1 € S' and r^^  chosen 

from dO(r, ). 

In place of the maximization problem in Q?# we consider the 

problem of maximizing the expected value of 

(1)      PN '• R(p1,q1,r1) 4 R(p2,q2,r2) 4 ... + R(PK'qN,rN^ 
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ov«r all  feedback pollclei     f^i'^p»•••»^wl•    ^ thl8 we mÄan 

that    q,     la choaen with a knowledge of    p,.     A0Mr    q.     Is 

determined,     r.     Is obtained   from    dO{r1),    giving rise to    p2. 

BMn    q«    is »elected,  with knowledge of    Pp,     r2    is obtained 

from    dO(rp),    yielding    p^,     and so on. 

Introducing the  sequence of functions 

(2) rv(Vi)  - max exp P  , 
N    1 M  [r\    N 

N - 1,2,...,    we  see that 

(3) fl{pJ  = maxy?R(p1,q1,r1)dO(ri), 
ql 

and,  as above, 

(4) fN(p1)   = m&x[/{R(p1,qllrl)   +  f^^TCp^q^^ )) )da( ^ ) ] 
C11 

for    N -  2,3#.... 

We  see then that  stochastic processes of this type can be 

treated  In very much  the  same   fashion as  the  detemlniotic  pro- 

cesses discussed earlier. 

6.     Prediction and Information Theory 

Let us note in passing that  these  techniques can be used 

to provide new approaches to  prediction and information theory, 

and extensiopn of the previous results.     For prediction theory* 

tee Kalaan  [$], and Bellman  [10] ;  for Infomatlor  theory,  tee 

BillMan-Kalaba  [?] ,   [llj , and Narveha^   [12] . 
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7. Adaptive ProcgiBeg 

We now wish to conelder processes In which not enough Is 

known ♦"-o use a formulation of the type given above.  There are 

many ways of treating processes of this type, and It Is never 

olear as to which la the proper way of doing this.  Nor Is It 

clear that this adjective "proper" has any meaning In this 

context. 

It must be recognized, however ruefully 01 regretfully, 

that no definitive theory of uncertainty can ever exist.  The 

theories that are used will depend upon the applications that 

are made and the personal philosophy o: the user. 

We are thinking of processes in which 

(l)  (a)  cause and effect may not be known; 

(b) the state of the system at any time may net be known; 

(c) the range of decisions may not be known; 

(d) the utility functions (e.g. R(p,q)) may not be known; 

(e) the duration of the process may not be known; 

(f) it may not be known whether detemlniatic or stochastic 

influences are paramount, or whether the process is a 

one-person or multi-person process. 

These are not problems which conventional mathematical 

techniques are deslgnid to treat.  We propose *.o show how they 

can be precisely formulated and treated analytically by means of 

the foregoing mathematical apparatus, the functional equation 

approach of dynamic programming.  For some other approaches which 

appear promising, see Robbins [l)], Box [14]. 
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8.    Information Patttm 

In treating proeastaa involving unotrtainty, our hopt is 

that tha aultittaga natura of tha situation will tnabla us to 

raduea tha j.aval of unsartainty stage—toy-stage.    This idea 

laada to SOBS interesting ideas concerning asymptotic behavior 

which we shall discuss below. 

It  is not to be expected that in all caaes a simplification 

will ensue as the process continues.    There is little difficulty 

in displaying processes which complicate to an extraordinary 

degree aa additional information is obtained. 

Without worrying about such matters,  let us formulate an 

important type of adaptive process.    We follow the brief sketch 

given  in  [8].    Let the  stste of the system    S    be specified, 

aa usual, by a point    p    in phase space,  and by an information 

pattern    P.    This information pattern represents the 

information about the process that we retain  in order to deter- 

mine some of the properties of the decision process which are 

initially unknown.    In our case,  let us assume that only the 

distribution function for    r    is unknown.    The simplest  infor- 

mation pattern that one can think of in this case is the entire 

previous history of the process.    Oenerally,  one can do much 

better than this and substantially compress the vast amount of 

data. 

The state of the system is now specified by a point in an 

extended phase space,     [p»P].    A choice of a decision vector 

q    results in a transformation of    p    into    T1(p,P;q,r),     and 

P    into    T2(p,P;q,r).    lero    r    is a random vector variable, 
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specified by an a priori probability distribution    dO(p,P;q,r)f 

itself a part of the  Information pattern    P. 

Let us suppose,  for the  sake of siMpliclty,  that the new 

state    p,     is known after the decision    q-,    has been made.    Let 

the a priori single stage return be    ^(T^p^^r) ,T2(p,P;q,r)) 

Then,   introducing the function 

(1) fN(p,P)  - Min Exp *(PN,PN). 

where, as in the preceding cases, the ainiaua is taken over 

feedback control policies, we have the functional equations 

(2)      fN(p.P) - Hin c/
?fH^1(T1(p,P;q,r),T2(p,P;q,r))dO(p,P;q,r)j, 

for N - 2,3,...,  with 

(3)      Mp,?) - Kin [ /V(T1(p,P;q,r),T2(p,P;q,r))dO(p,P;q,r)l. 

These relations can be used to establish the existence of 

optiAal policies and to study further properties of the aulti- 

stsge process. In particular, as we shall discuss below, they 

can be used as a basis for the construction of a theory of 

continuous processes. 

9. Soquenttal Machines, Coin-weighing and Search Processes 

The further study of infonsation patterns inevitably leads 

to a consideration of sequential «achines and search processes 

in general. As an illustration of the way in which the infor- 

mation can beooae conplicated in an extraordinary fashion as a 
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proo«»i oontlnutB, oontld^r th« wtll-known puzzle of locating 

a dafactive coin in a batch of N coins, given an equal arm 

balance, and its extensions. 

The initial information is that a batch of N coins con- 

tains one defective coin. After a weighing, involving the 

conparison of two groups of k coins chosen from this original 

set of H coins, we know that the defective coin is in on* of 

these two sets of k coins, or In the reaaining batch of 

untested M - 2k coins. Thus the form of the information 

remains constant with each succeeding test, or stage of the 

process, and simplifies to the point where we can eliminate the 

original uncertainty. 

Consider what happens, however, when we start with the 

knowledge that there are two defective coins. Comparing two 

sets of k coins each, we are led to the following possibilities: 

(1)  (a) If the scale balances, there is either one defective 

coin in each of the k-eets, or none, which mean4 

that there are two defectives in the remaining 

M - 2k coins, 

(b) If the scale unbalances, there is either one defective 

coin or two defective coins in one of the k—sets, and 

either one or none left in the reaaining N - 2k coins. 

It 5s easy to see that as the testing process continues, 

the information pattern increases In size and In complexity. 

If we allow perfectly general testing policies which admit ths 

mixing of different batches, it appears to be hopelesj to 

attempt to keep track of the process. 
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Prebltas of this nature ar« of grtat practical iaportanct 

and txtramtly difficult to handle by means of analytic tech- 

niques. For soat preliminary work on the foregoing problem by 

means of functional equation techniques, see Bellman [13], 

Bellman and Qluss [16] ,  Caivms [17] . 

For a discussion of problems of related nature, see 

H. Sobel and P. A. droll [18], R. Dorfman [19] , and P. Ungar [20]. 

10. Continuous Adaptive Processes 

A simple and conceptually important way to found a theory 

of continuous processes of any type is by a passage to the 

limit in a theory of discrete processes. In some situations, 

it is not difficult to construct a theory of the continuous 

process directly. In these cases, it is essential to establish 

the equivalence of the two approaches. Many theorems of this 

type exist in connection with the study of differential and 

difference equations, in the field of partial differential and 

difference equations, and in the theory of probability. 

In some fields, only recently developed, the continuous 

theories do not exist and seem quite difficult to formulate. 

For these, a passage from the discrete to the continuous seems 

to be the easiest and safest approach. 

One advantage of using the passage to the limit approach 

lies in the fact that we can in many cases establish the 

existence of a limiting continuous process under conditions 

thioh are far weaker than those necessary to impose in order 

to guarantee the existence of a continuous process constructed 

directly. 
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In ord«r to  illuttrat« th«t« oooHMntt which at first may 

not stMi roasonablo,  Itt ua oonaidar a problam in the oalculua 

of fariationa. 

Suppoaa that wa wiah to dataraina tha ainiMum of tha 

funational 

(1) J(u)  -/T g(u,u')dt 

ovar all funetiona    u(t)    satisfying tha initial condition 

u(0) • o.    Thia probla« ia far ■ora complex than it nay aaan 

at firat glanoa.    In tha first place,  to assure that an actual 

■iniMua, rather than an infimm, exiata, strong conditions must 

be imposed upon the function    gC^u').    Secondly,  the standard 

variational technique, which leada to the Suler equation, 

poaaesses many drawbacks;  see   [2]   for a detailed d.4acuaaion. 

We have then a aituation in which it ia not eaay to 

establish the axiatenee of a solution,  and not eaay to obtain 

the aolution once  the axiatenee haa been asta'jliahed. 

Consider, however,  s discrete  version of the foregoing 

problem.    Suppose  that we wiah to minimiza 

(2) J« " kl0
l{\'\)h'   uo - »' 

where    u.    .   " ^ ^ ^u^*    Very mild conditlona upon the function 

g    will enable ua  to assert the existence of an attained mini- 

mum,    furthermore,  if we allow    u    and    v    to assume only a 

finite aet of valuea,  all we aak ia  that the function    g(u,v) 

be defined for the allowable values of    u    and    v. 
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'Th9  p«curr«nc« relation 

(5)      f^o) - «In [g(o,v)A ♦ ^(o ♦ vA)] 

yields a oonntruetiv« way of obtaining the desired «Inimui 

value. 

The question naturally arises as to the relation between 

the discrete and continuous versions of this multistage 

decision process. Ve suspect that as ^ —•• 0 tht discrete 

process will converge to the continuous process—if we impose 

sufficient regularity conditions upon g(u,u*). 

This is indeed the case.  It is quite easy to show that 

the conditions usually imposed upon g(u,ul ) to guarantee'the 

existence of a solution are strong enough to yield the desired 

limiting behavior. See the proof by Fleming in [ x] . 

The more interesting problem is to determine conditions 

upon gtUyU1) which will guarantee that the limit of the 

discrete process exists as A —» 0. We can then define a 

continuous processt not directly by way of (l), but in this 

fashion. 

It turns out that this program can be carried out. In 

[2l] it was shown that using only the recurrence relation of 

{})  and imposing upon gfUfU* ) conditions which are far 

weaker than those required in the classical theory, the 

existence of a limit for fu(0) as A -* 0 can be established. 

It follows that we have a concept of a continuous variational 

process which generalizes that of the classical version. 
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Ptrhapt the moat Important aaptot of this approach ie 

that it anablas ua to introduca the Idea of a continuous pro- 

caas  in aituationa in which no claaaical theory axiati.    In 

[5j   wa diacuaaad thia for atochaatic variational proceaaas. 

It ia olaar that wa can in a aimilar faahion build upon the 

fonnulation of discrete adaptive proceaaea we have given in 

the preceding pagea to fomulate a theory of continuous varia- 

tional proceaaea of adaptive  type.    Similarly,  we can construct 

a theory of oontinuoua multistage games, of ordinary stochastic 

or adaptive type.    See   [l]   for the formulation of the discrete 

multistage veraion. 

The problema of convergence of the return  function and of 

the optimal policies are quite complex.    They  require a blend 

of claaaical analysis and probability theory which has not 

heretofore existed. 

11.    Reduction of Dimensionality and Sufficient Statistics 

the  functional equationa we derived to treat adaptive 

control proceaaas involve,   in many cases,  functions of 

functions.    Although these  functions can be uaed to establiah 

the exiatence of optimal policiea,  they are not well suited to 

analytic  inveatigation nor to computational work. 

In order to obtain analytic and numerical  results,   it is 

essential  that we reduce these  functions of functions to 

ordinary functions.    In many caaea, we can perform thia 

reduction by using the concept of auffieient atatiaties.    Thia 

idea enablea ua to reduce  the information pattern  'rom a aet 

of functiona to an ordinary vector. 
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AB an example of this,  contlder a process  in which a 

certain random variable    r    assumes only the two values    0 

and    1    with unknown probabilities of respectively    1 - p 

and    p.    After the process has continued for    M    stages,  we 

have acquired an information pattern     [0,0,1,1,1,...,0,1] 

consisting of the values assumed by    r    over the preceding    N 

trials. 

In place of this  set of values which increases  in size as 

the process continues,  we can often use merely the number of 

I's    and the number of    O's    which have been tabulated.    In 

these cases,  the order of occurrence  is of no importance. 

In place of a function    fN(c;S)    where 

3 «   [0,0,1,1,1,...,0,l] ,    we will now have a function 

fj|(c,m,n),    where    B    is the number of    I's    and    n    is  the 

number of    O's;    see Bellman  [22j , Bellman and Calaba  Q*l , 

Freimer  [2^],   [24],    for applications of this id*s.    Clearly, 

this  technique can be used in many ways. 

One technique which has not been  investigated as yet  is 

that of  "asymptotic sufficient statistics."    Perhaps the best 

example of this is the central limit theorem.    If the random 

variables    x,    are drawn from an unknown distribution,  and if 
1 N 

it is desired to determine the distribution of    zN •    2 xi» 

we know that for large    N    it is sufficient to tabulate merely 
N      N   2 

the two sums  ? xi *  ^ xi * 
i-1 1  i-1 1 

If, as in many cases, we are interested only in steady- 

state policies, which is to say asymptotic policies, results 

of this type will enable us to reduce the dimension of the 
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problem grtatly.    Oth«r t«ohnlqut8 for reduction of dljitnslon-- 

allty will b« found in B«ll«an  [23] ,  Beckwith   [26] ,  Bellman 

and Kalaba  [/tf] , Ballnan and Drvyfua   [26] . 

12,    Lin»ar Kquationa and Quaiiratic Criteria—I 

In vitw of th« analytic complexity of tht general problem, 

and with application of the method of suoceaaive approximations 

in mind,  it is worthwhile to consider processes governed by 

linear equations and quadratic criteria. 

Let us consider first the scalar case.    Write 

^ VH - aun ^ vn + V    u0 - c' 

and suppose that the v.  are to be chosen so as to minimize 

the expected value of the quadratic form 

{2) J><_ Jo'""2*7^2'' 
Consider first the stochastic case where the r. are 

independent random variables with known distributions, which 

for simplicity of notation we shall take to be same. 

Writing 

(5)      fJc) - Win Rxp Jy, 
* v  r  * 

it is easy to see that 

(^      f0(c) - c
2, 

and 
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(5) fjjCe) - Min  [c2 + 7W0
2 + Äxp ^(»c + v0 + r0)] 

- «In   [c2 + 7\v0
2 ^^fj^^ac -^ v0 ^ r)dO(r)] . 

It it «asy to show Inductlvtly that    ^(o)    la a quad- 

ratio In    o,    Lt.« 

(6) fj|{c) - Uj. «♦■ v»c -♦■ WJJO  ,     N - 0,1,2,..., 

Mh«r«    Uj.,  Vj.    and    Wj.    are Independent of    c.    U'ilng  this 

representation for the functions    fM(c),    w* readily obtain 

representations for    Uj., v^    and    w^    In terms of    u^  .,  Vj, - 

and    wM_1;    see lellman  [29], Kramer  Oo] , üeokwlth  [26], 

Freier  [2fl , Adorno   [>l] . 

These results can no« be used for computational purposes 

and to study the asymptotic behavior of return functions and 

optiALl policies as    N -•» 00 . 

1^.    Linear itquations and Quadratlo  Criteria—II 

Let us now consider an adaptive version.    Suppose that 

jr  i     is a sequence of random variables  «Ith probability    p 

of assuming the value    1    and    1 - p    of    0.    It is clear that 

we can use ths idea of sufficient statistics.    Let 

(1) fM(c,m,n)  " Hin Kxp JM, 
N v      r      ^ 

where    m    1—values and    n    0-values have been obssrved for the 

r.    over the past    m •*- n    stages. 
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Ltt    dO(p)    b* an initial a priori distribution for    p 

and luppoaa that it is agr«td to use the following transfor- 

mations : 

(2) dO(p)^   XQ{?\   .'     lf    r0-  l' 
PX pdO(p) 0 

^   (1 -p)dO(p) 0 

Tht result is that afttr m + n trials with m I's and n 

T'B, we have as the nsw a priori distribution 

(3) dfl  (p) >  gV - P)ndQ(P)  . 

We use as an sottaate  for    p    for the next  stage the value 

Z1 p-^u -p)n<io(p) 

•dOip) 

Menee(   the  functional equation  for    fN(c,m,nj     is 

(5) fjjlc.m^)   - Kin   [c2  > /\v0
2 ^  PB>n

rH_l^ac  4  v0 ^   l) 

V0 

^   ^  -^,n)fN-l{ac  4 ^Q- 

As above,   we can use  the  structural  relation of   (12.0)   to 

simplify  tils relation. 
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14.     Dlscuoolon 

Th« problem of determining the asymptotic behavior of 

fM(ofm,n)    as    N —♦ oo     has many complex features.    It Is to 

be expected that In one lense or another,     fw(c,mfn) ^ ^M(C»PO^ 

as    N -♦ oo,    where    p0    Is the  actual  value of    p.    A parti- 

cular version of this problem has been attacked by Adorno   [}l] . 

1^.    Open Problems 

In the foregoing sections we have Indicated how a theory 

of adaptive control processes can be constructed. Associated 

with this approach, there are any number of analytic problems 

which we have explicitly or tacitly raised.    Some of these  are 

(1)     (a)    Is  the  set of trarsformatIons   In   (13.2)   the  "best" 

way to modify a priori Information? 

(b) Is the estimate of  (1^.4)  the  "b^at" estimatefbr    p? 

(c) Asymptotically, does  It make much difference what 

transformations we employ  from stage to stage,   and 

what a priori Information we  assumet 

The analytic difficulties  In this  field are great,  but 

the conceptual difficulties ar^ greater.     It soems reasonable 

to believe thst there never will be definitive theories  In 

this  area, nor Is  It clear that  the «ord   "optimal" has  an 

absolute meaning.    Ve  can summarize  the situation simply by 

saying that all of the philosophical paradoxes of statistics 

and game theory are present, with their cousins and their 

sitter* and their aunts. 
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